UNIT Il
Image Transforms
2-D FFT, Properties.
Walsh transform, Hadamard Transform,
Discrete cosine Transform,
Haar transform, Slant transform,
Hotelling transform.

Textbooks
R. C. Gonzalez, R. E. Woods, Anil K. Jain
Digital Image Processing, Fundamentals of

Digital Image Processing



1-D DISCRETE COSINE TRANSFORM
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1-D INVERSE DISCRETE COSINE TRANSFORM
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2-D DISCRETE COSINE TRANSFORM
DCT
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Hotelling transform

Eigen vector transform

Principal component Transform

Karhunen- Loeve Transform (KL Transform)



Hotelling Transform
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Hotelling Transform: Y = A(X—m,)

The rows of matrix A are the eigen vectors of the covarience matrix
arranged in descending order (The first row corresponds to the eigen vector
corresponding to the largest eigen value of C, ...)



Example

* Consider 4 column vectors (M=4)

%1 xZ x5 x4
0 1 1 1
0 0 1 0
0 0 0 1
3
1 1

* Mean vector m, = 7



Covariance matrix

Cx =

(31 1)
13 -1

1-1 3,



Eigen values of Cx
1,4,4

Eigen vectors of Cx

-0.5774 0.5774 0.5774
-0.1543 -0.7715 0.6172
0.8018 0.2673 0.5345



Hotelling Transform:

y=AlX

A mx *1 x4
0.80 0.27 0.53 0.75 0 1 1 1
0.15 0.77 0.62 0.25 0 0 1 0
-0.58 0.58 0.58 0.25 0 0 0 1

x1-mx x2-mx ®3-mx *4-mx
-0.75 0.25 0.25 0.25
-0.25 -0.25 0.75 -0.25
-0.25 -0.25 -0.25 0.75
y1 y2 vy yd
-0.80 0.00 0.27 0.53
0.15 0.00 -0.77 0.62
0.14 -0.43 0.14 0.14
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+ C=ACA

4.00 0.00
0.00 4. 00
0.00 0.00
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fa) A binarv object; (b) ity principal axes {eigenvectors);
(c) object rotated by Hotelling Transform



Establish a new coordinate system whose origin
is at the centroid of the population.

And whose axes are in direction of eigen vectors
of Cx.

The transformation is rotation which aligns the
data with the eigen vectors.

The alignment is a mechanism which
decorrelates the data.



 The concept of alignhing a 2-D object with its
principal eigen vectors plays an important role
in image analysis.

e After an object has been extracted from an
image, computer techniques for recognizing the
Image are sensitive to image rotation.

 Because the identity of an object is not known
prior to recognition, the ability to align the
object with its principal axes provides a reliable
means for removing the effects of rotation from
the image analysis process.



From channels to principle components

Component | Component 2

Channel |
Chanmel 4 Component 3 Component 4
Channel S Channel & Component 5 Component 6

[a] A six-channel aenal image [b] Six principle components after Hotelling Transfarm
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Spectral band 6

Spectral band 5

Spectral band 4

Spectral band 3

Spectral band 2

Speciral band 1

Formation of a vector from corresponding pixels in six images,



Eigen values of covarience matrix of the
images shown

A1=3210

A2=931.4
A3=118.5
A4=83.88
A5=64.00
A6=13.40



e As the first two images account for 94% of the
total variance

e Instead of storing all 6 images, only first 2
images along with mx and first 2 rows of A are
stored.

* Data compression is by product of Hotelling
transform.



Camera model
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Figure 2.18 [maging geometry with two coordinate systems. (From Fu, Gonzalez, and Lee

[1987].)



ouppose that, mitially, the camera was in normal position, in the sense that
the gimbal center and ongin of the image plane were at the origin of the world
coordinate system, and all axes were aligned. The geometric arrangement of

Fig, .18 may ¢
sequence of ste

len be achieved in several ways,

s: (1) displacement of the gimba

pan of the x axis, (3)tlt of the 2 axis, and (4) disp

with respect to

the gimbal center.

et us assume the following
center from the origin, ()

acement of the image plane
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(X = Xgeos 0 + (Y - Y)sin f - r,

= A
: ~(X = XysinOsina + (Y - Yy)eos Osine - (Z - Zy)eosa + 1, + A
(2.542)
and
o) ~(X = X)sinflcosa + (Y - Yjeosfcosa + (Z - Z)sina - 1,

(X = Xy)sinfsina + (Y - Y,)cos Bsina - (Z = Z)cosa + 1, + A
(2.543)



Summary of Image Transforms

DFThunitary DFT Fast transform, most useful in digital signal processing, convolution,
- digital filtering, analysis of circulant and Toeplitz systems. Requires
- complex arithmetic. Has very good erergy compact ion for images,

Cosine Fasttransform, requires real operations, near optimal substitute for |
~ the KL transform of highly correlated images. Useful in desxgmng
transform coders and Wiener filters for images. Has excellent
erlergy compaction for images,



[ L a

Hadamard B Faster than smusmdal transforms, since fio multlphcatlons are
- tequired; useful in digital hardware implementations of image
processing algorithms. Easy to simulate but difficult to analyze.
Applications in image data compression, filtering, and de51gn of
codes. Has good energy compaction for images.

Haar ~ Very fast transform, Useful in feature extracton; image coding, and
image analysis problems, Energy compaction is fair,
Slamt - Fast transform. Has “image-like basis”, useful in image codmg Has
| % verygood energy compaction for images. |
* Karhunen-Loeve  ~ s optimal in many ways; has no fast algorithm; useful in perfonnance

evaluation and for finding performance bounds, Useful for small
Size vectors e.g., color multispectral or other feature vectors. Has

the best energy compaction in the mean square sense over an
ensemble
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